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Summary: A four-step synthesis of optically pure Ga-phenyl pyrroloisoquinolines from 

chiral formamidines has been accomplished. 

Pyrrolo[2,1-alisoquinolines such as 4.6, 4.k have been shown to be an important class of 

compounds due to their significant anti-depressant activity. 1 Because of this, they have been the 

object of considerable synthetic activity primarily due to Maryanoff2v3 who has described efficient 

routes to & Asymmetric syntheses have also been described by these authors furnishing both 

diastereomers &, ti in high enantiomeric excess. 

We wish to describe a four-step, three-pot route to the Go-phenylpyrroloisoquinoline Q 

which proceeds in good yield and high optical purity. The method is based upon the use of 

metalated chiral formamidines which are alkylated with a high degree of diastereoselectivity.4 

Starting with racemic 4-phenyl-1,2,3,4-tetrahydroisoquinoline 1s~ reaction with the 

dimethylaminoformamidine transformed it into the chiral formamidine 2 by direct exchange. The 
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resulting diastereomeric mixture 2 was assured to be 1:l by using excess chiral 

dimethylaminoformamidine and following the reaction until all of 1 was consumed. In a similar 

fashion, the achiral formamidine 3 was prepared using the P-methyl-1-methoxypropyl amine as the 

formamidine component.6 
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Metalation of formamidines 2 and S with s-BuLi or t-BuLi at -78’C resulted in a deep red 

solution, which after 30 minutes was alkylated at -1OO’C with 1-chloro-3-iodopropane. Removal 
of the formamidine auxiliary7 (EtOH-H20-HOAc-NH2NH2, 8:l :1:2) at 0°C produced the secondary 

amine, 5 which spontaneously cyclized to a 2.2 : 1 ratio of diastereomers a, 48 (Table I) in 

greater than 80% yield over three steps. In an attempt to enhance the ratio of 4a : 48 the 

stoichiometry and nature of alkyl lithium base was varied (Table I). Most notable of these 
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results is (entry 5) wherein a deficiency of base resulted in a diastereomeric ratio of 13:l for & : 

fi, indicating a difference in the kinetic acidity of the C-l protons for each formamidine 

diastereomer. Lithium diisopropylamide (entry 6) was found to be unsuitable as a base, most likely 

due to its weaker basicity.6 

TABLE I 

Entry R’LI (eq.)a R YIELD(%)b 4a:4bc 

1 f-BuLi(1 .l) VBE 56 1.1 :l 

2 s-BuLi(l.l) VBE 66 2.2 : 1 

3 s-BuLi(l.1) MMP 53 1.1 :l 

4 f-BuLi(0.3) VBE 25 1.1 :l 

5 s-BuLi(0.3) VBE 25 13 : 1 

6 LDA (0.5) VBE 0 0 

aAll reactions run in tetrahydrofuran. bYields after silica gel chromatography. 

cDiastereomer ratio determined by capillary GC, (250°C, 5% phenyl methyl silicon) 
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Unfortunately, these high ratios were achieved at the expense of the chemical yield. The 

configurationally different formamidine diastereomers were undoubtedly metalating at different 

rates in the presence of a deficiency of base. In the case of the stronger base t-BuLi no such 

biased metalation was seen. The mixture 4a. 48 was separated by preparative HPLC [Waters 

Porasil;hexane (70%) ethyl acetate(28%), methanol(2%). The f H NMR spectrum of pure & as its 

(R)-(+)-MTPA salts indicated a large excess (>90%) of one enantiomer. 

To further support the NMR assay, alkylated analogs of 1 were prepared. Formamidines 2 

and 3 were individually metalated as outlined before, and then alkylated with the TBDMS ether of 

3-bromo-propanoll0. Removal of the formamidine auxiliary, produced the alkylated isoquinolines 

Q , f& in racemic and non-racemic form respectively. Pure 6a and a11 were converted to their 

(S)-(-)-MTPA amides,‘* and the 1sF NMR spectra showed distinct signals for each enantiomer at 

-69.9, and -71.6 ppm (CFCls internal standard). When §g was examined, an enantiomeric excess 

of >92%, was revealed.13 
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The metalation/alkylation sequence of chiral formamidines provides a new method for the 

synthesis of pyrroloisoquinolines of type 4, that occurs in >85% yield over the four steps and in 

high optical purity. 
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